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Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their
fundamental conceptual importance. The explanation of universality at phase transitions was the great
success of the theory formulated by Ginzburg and Landau, and extended through the renormalization
group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain
situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed
to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study
the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical
results strongly indicate that the transition is continuous and is compatible with a tricritical universality
class, at variance with previous proposals.
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The Landau-Ginzburg-Wilson (LGW) theory of phase
transitions [1] has been a remarkably powerful approach to
study critical phenomena, both in classical and quantum
systems. The basic assumption is that each phase is char-
acterized by its symmetries and a local order parameter for
the broken symmetries (in case of an ordered phase). To
describe a phase transition, this approach amounts to ex-
panding the free energy of the system in powers of the
order parameter(s) describing the ordered phase(s).
Exceptions are, however, known in 2D classical or equiv-
alently 1D quantum systems where stable critical phases
(with power-law correlations but no broken symmetry)
exist, the low-temperature phase of the 2DXY model being
one of the most famous examples. The associated
Kosterlitz-Thouless (KT) phase transition [2] and the role
of topological defects have become very fruitful concepts
in the statistical physics of 2D phases not described by a
simple order parameter in the LGW sense.

The stimulating idea that ‘‘non-LGW’’ continuous phase
transitions could also occur in higher dimensions has re-
cently been proposed in the context of quantum magnetism
[3]. There, the possibility of a generic (i.e., not requiring
fine tuning) continuous transition between two phases with
different symmetry breakings (Néel and valence bond solid
states) was pointed out, in contrast to the LGW prediction
of either an intermediate phase with none of the two orders,
or a coexistence region, or a direct first-order transition. So
far, simulations on all candidate quantum models [4] rather
see a first-order phase transition, a possibility which can
never be discarded for a given microscopic model (see,
however, recent claim of a continuous transition [5]).

From these perspectives, classical dimers at close pack-
ing on simple hypercubic lattices are particularly interest-
ing as they are too constrained to form a liquid with a finite
correlation length, even at infinite temperature: instead of

decaying exponentially, the dimer-dimer correlations are
algebraic, both in 2D [6] and 3D [7]. In 2D, the transition
from such a critical state to a broken-symmetry phase
(dimer crystal) has been studied in Ref. [6]. In this Letter
we study the analogous transition in a three-dimensional
classical dimer model. Both in 2D and 3D, a naive LGW
expansion in terms of the low-temperature order parameter
completely misses the critical nature of the high-
temperature phase and thus cannot describe correctly the
transition. Whereas in 2D the situation is well understood
in terms of a KT transition [6], our numerical simulations
on the 3D model show the existence of a single continuous
second-order phase transition between the algebraic liquid
at high temperature (so-called Coulomb phase) and a crys-
tal with broken lattice symmetries. Our high-precision
Monte Carlo (MC) data allow us to locate independently
the transition starting from both phases. We determine the
critical exponents and find that they are surprisingly close
to those of a tricritical point. In a related recent work,
Bergman et al. [8] further argue that the very existence
of the Coulomb phase guarantees that this transition lies
outside the standard LGW framework (see also Ref. [9]).
The Coulomb phase in turn owes its presence to the ab-
sence of unpaired sites (monomers) [7]. In this spirit, it is
the suppression of such topological defects which opens
the way to new types of critical behavior. Indeed, such
‘‘topological engineering’’ has previously been used in the
context of liquid crystals [10], and more recently for a
nonlinear � model [11]; as we discuss before concluding,
the numerical values of the critical exponents obtained in
Ref. [11] are not consistent with the ones reported here.

The model is a 3D extension of the one studied in
Ref. [6] on the square lattice. Configurations are dimer
coverings of the simple cubic lattice of volume N � L3

sites, with L the linear dimension. Dimers are hard core
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and close packed, i.e., every lattice site is part of one and
only one dimer. Interactions favor aligment of nearest
neighbors (n.n.) dimers on plaquettes of the lattice:

 E � �
X

plaquettes

njj � n� � n==; (1)

with njj; n� and n== denoting the number of plaquettes with
parallel n.n. dimers in the x, y, and z directions. Simu-
lations (up to N � 963) are performed with a recent MC
directed-loop algorithm [12].

At T � 0, the dimers order in columns to minimize the
energy, resulting in a sixfold degenerate ground state. The
associated order parameter is a three-component vector
m��r� � ���r�n��r�, with n��r� � 1 for a dimer pointing
in direction � 2 x, y, z at site r, and 0 otherwise. Naively,
one would expect a high-T phase with h ~mi � 0 and ex-
ponentially decaying dimer correlations. However, as
shown by Huse et al. [7], at T � 1 the system is in a
‘‘Coulomb phase’’, with no true long-range order but with
dipolar dimer-dimer correlations. To see this, the appro-
priate variable is the ‘‘electric field’’ [7] E��r� �
���rn��r�. This field satisfies r �E � ���r � �1, as the
dimers are close packed. The Coulomb phase can be
characterized [7] in the continuum by an effective ‘‘elec-
trostatic’’ action S � K

2

R
drE2�r� which generates the

dipolar correlations. Dimer fluxes � �
R

� E � dS through
the planes perpendicular to the units vectors are conserved
quantities and vanish on average. One easily shows that
flux fluctuations allow the calculation of K,

 h�2i=L �
1

3L
�h�2

xi � h�2
yi � h�2

zi� � 1=K: (2)

A close similarity with a 3D XY model can be seen
through a duality transformation [13] in which r �E �
���r is enforced by an angular Lagrange multiplier � at
each site. The discrete sums on E� are then performed by a
Poisson formula, resulting in an XY interaction (Villain
form) between the � variables. In this language, the
Coulomb phase corresponds to an ordered phase with
broken O�2� symmetry for �, and 1=K is the associated
spin stiffness.

We first present thermodynamic results. Figure 1 (left
panel) shows the behavior of the specific heat per site
Cv=N as a function of T. Two close-by peaks are observed
around T � 1:52 and T � 1:67. The first peak is much
broader and does not diverge with system size: since it is
already present and almost converged on small lattices L<
16 (not shown), it cannot be associated to any long distance
or critical behavior. The second peak is much more char-
acteristic of a phase transition: it diverges with L, with a
power-law-like envelope typical of second-order phase
transitions (see top right panel). Note that this peak is
extremely hard to detect since it is absent on small systems
(L 	 16) and also very sharp. We interpret this peak as the
signature of the direct transition (see below) between the
Coulomb and columnar phase. Our best estimate for the

temperature of its divergence is TCvc � 1:676�1�. To deter-
mine the nature of the transition, we also considered en-
ergy histograms and the energy cumulant [14] defined as
1� hE4i=3hE2i2. No sign of a double peak is detected in
histograms and the energy cumulant is found to saturate to
2=3 at the transition point: this indicates that the transition
is not first order.

Let us now consider the high-T phase. The left inset of
Fig. 2 displays typical data forK�1 for a sample L � 32.K
is finite in the whole high-T range [with a value K�T �
1� � 5:12�1� in agreement with Ref. [7]] and diverges
below T ’ 1:6 (rough estimate from the plot, and inset of
Fig. 3). We expect for a second-order phase transition a
scaling form of the type

 K�1 � h�2i=L � L�zf
L1=��T � Tc��; (3)

where z is a scale exponent, � the correlation length
exponent, f a scaling function and Tc the critical tempera-
ture. Dimensional analysis of the Coulombian action gives
z � 1 and therefore, at Tc, the curves of LK�1 intersect for
all L and the derivative L dK�1

dT scales as L1=�. Numerically,
an accurate crossing point (see main panel of Fig. 2) is
indeed obtained for z � 1, which is also a good check of
the second-order nature of the transition. An estimate
TKc � 1:6745�5� can be obtained from the crossing of the
curves for the largest L. In the Coulomb phase, dimer-
dimer correlations are expected to be dipolar [7], and this is
found to be indeed true all along the high-T phase. The
prefactor in the dipolar form of the correlation functions
varies as 1=K, and we have checked with high precision
that the value ofK obtained from flux fluctuations perfectly
coincides with that from correlations. Monomer-monomer
correlators are also available in the simulations [6,12] and
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FIG. 1 (color online). Left panel: Specific heat per site Cv=N
as function of temperature T for different system sizes L. Top
right panel: Zoom on the second peak. Bottom right panel:
Scaling of the specific heat at TCvc � 1:676 as a function of
system size L. The dotted line denotes a power-law fit for the 4
largest systems L � 48, 64, 80, 96 (see text).
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we find that test monomers are deconfined from T � 1
down to Tc, confirming the Coulombian nature of the
phase.

To probe the nature of the low-T phase, we calculate the
columnar order parameter

 m �
2

N

��������

��������
X

r
~m�r�

��������

�������� (4)

and its Binder cumulant [15] B � 1� hm4i=3hm2i2. The
left inset of Fig. 3 shows the expectation value hmi for a

sample L � 32 (for illustration, K�1 is again shown).
Columnar order is observed to set in at low T. Binder
cumulants in the main panel admit a crossing point for
systems with different L, leading to an estimate Tcol

c �

1:67525�50�. Assuming the standard scaling form B �
f
L1=��T � Tc��, the derivative dB=dT should scale as
L1=� at Tc.

The previous findings and the agreement between the
various estimates of Tc clearly indicate that the model
displays a single second-order phase transition between
Coulomb and columnar phases. A straightforward choice
for a LGW theory would be to usem as an order parameter.
However, this fails as the Coulomb phase is not just a
simple liquid where all correlations decay exponentially.
Rather, it retains algebraic dimer correlations whose dipo-
lar nature, crucially, does not lead to a peak in the structure
factor anywhere in Fourier space (unlike the analogous
situation in two dimensions [6,12]). Indeed, the natural
variable with algebraic correlations is a coarse-grained
‘‘electric’’ field E; however, this variable exhibits no
long-range order in either phase. Instead, it is the fluctua-
tions of E that distinguish the two phases. It is also in-
structive to examine the transition from the Coulomb side
with the dual angles �. It allows the mapping of the dimer
problem onto a model of interacting vortex loops with a
long-range 1=r potential. While these loops are dilute in
the Coulomb phase, they have to ‘‘proliferate’’ to repro-
duce a low-temperature crystal phase with frozen dimer
positions (thus highly fluctuating dual variables �).
Intuitively, the restoration of the O�2� symmetry would
be through an inverted 3D XY transition, which is however
incompatible with the critical exponents found numerically
(see below). The crucial difference with a simpleO�2� spin
model can be traced back to the background electric
charges �1 which couple to the vortex loops and presum-
ably affect their proliferation. We note the similar analysis
of Ref. [8], where an unconventional non-LGW transition
is predicted in a closely related model.

We now come to the universality class of the transition.
The correlation length exponent � can be extracted from
the scaling with L of stiffness LdK�1=dT or Binder cu-
mulant dB=dT derivatives at the critical temperature Tc,
which can be calculated thermodynamically in the MC
process. Taking into account only the largest L � 48 (see
insets of Figs. 2 and 3), we obtain compatible estimates
�K � 0:50�4� and �col � 0:51�3� (error bars take into ac-
count stability of fits toward inclusion of smaller samples
and uncertainty on Tc). The specific heat critical exponent
� can be extracted from its scaling at the critical point:
Cv�Tc�=N � c0 � AL

�=�, where A is a constant and c0 the
regular part at the transition (c0 is non-negligible as can be
seen for the L � 16 sample in Fig. 1). A fit for the largest L
(see inset in Fig. 1) gives �=� � 1:11�15�, leading to � �
0:56�7�. Hyperscaling � � 2� �d is thus satisfied within
error bars. The last independent exponent can be obtained
from the scaling of the columnar order parameter at criti-
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FIG. 3 (color online). Crossing of the columnar Binder cumu-
lant B as a function of T near the transition point for different
system sizes L. The sample L � 16 is again out of scaling. Left
inset: Columnar order parameter m and stiffness K�1 (multiplied
by 8) in the whole T range for L � 32. Right inset: Cumulant
derivative jdB=dTj at Tcol

c � 1:67 525 versus L in log-log scale.
The dotted line is a power-law fit for the 4 largest L.
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FIG. 2 (color online). Stiffness K�1 multiplied by L [obtained
from h�2i, see Eq. (2)] versus T near the transition, for different
system sizes L. Left inset: Stiffness K�1 for the whole high-T
range for L � 32. Right inset: Scaling of the derivative
LdK�1=dT versus L in log-log scale for the estimated critical
temperature TKc � 1:6745. The dotted line denotes a power-law
fit for the 4 largest systems.
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cality m�Tc� � L��=� or from the associated susceptibility
� � hm2i � hmi2 � L�=�. Using standard relations be-
tween critical exponents, we obtain for the correlation
function exponent 	 � �0:02�5�. This set of exponents
excludes some simple 3D universality classes [such as
O�2�, O�3� with or without cubic anisotropy], but are
compatible with the universality class of anO�n� tricritical
point at its upper critical dimension d � 3, for which � �
� � 1=2 and 	 � 0 (up to logarithmic corrections). We
also note that the value at Tc of the cumulant of the 3D
order parameter m is compatible within error bars (see
Fig. 3) with the value 0.56 982. . . of a tricriticalO�3� theory
(for d � 3) [16]. With dimers, we do not have direct access
to the XY order parameter ~n�r� for the dual angles �.
We can, however, investigate the fluctuations of the electric
flux. �z is the integer-valued Noether charge associated
to the O�2� symmetry (‘‘total angular momentum’’ if
z is interpreted as the time direction): �z �


R
dxdy�n1@zn2 � n2@zn1�, where 
 appears in the ‘‘ki-

netic’’ term 

2 �@z ~n�

2 of the dual O�2� action. Above Tc, the
typical flux scales as

����
L
p

and the ratios h�4
zi=h�

2
zi

2 and
h ~�4
i=h ~�2

i2 are, respectively, equal to 3 and 5=3, in agree-
ment with the Gaussian and O�3�-symmetric nature of
fluctuations in the Coulomb phase. We believe that the
distribution of � is universal at Tc and we measured
h�2i � 0:28�2� and h�4i � 0:25�4�. The smallness of
these quantities at the critical point means that the discrete
nature of ~� � ��x;�y;�z� cannot be neglected there.

While it may be seen as the only way to reconcile the
numerical results with a LGW analysis, the tricritical uni-
versality class is rather unexpected here as it would imply a
‘‘hidden’’ fine-tuning of parameters of the effective action.
It is also quite possible that the exponents found are close,
but not equal, to tricritical exponents, thereby defining a
new ‘‘non-LGW’’ [3,8] universality class. The absence of
monomers is in fact very similar to the absence of ‘‘hedge-
hogs’’ in the models studied by Motrunich and Vishwanath
[11], which also display a transition from a broken-
symmetry phase to a Coulomb liquid. However, our critical
exponents do not match those of Ref. [11]. This discrep-
ancy might be due to one or several factors: (i) lattice cubic
anisotropies (not present in Ref. [11] but potentially rele-
vant) exist in our model which admits 6 ground states
related by cubic symmetry; (ii) the simulations of
Ref. [11] may not be in the scaling regime; (iii) the prox-
imity of a tricritical point (for instance at finite monomer
doping), could affect finite-size estimations of the expo-
nents and hide the true critical behavior. Finally, even
though we simulate systems with N up to 963, a first-order
transition with a large correlation length can never be
excluded from finite-size simulations.

In conclusion, our study has established the crystalliza-
tion in the cubic dimer model as an example of an uncon-
ventional phase transition in a classical model in three

dimensions. The conventional LGW approach to phase
transitions is currently under attack from many sides
[3,8,11,17], but shows considerable resilience in micro-
scopic models [4]. From this perspective, our results are
promising since they cannot be described by a strict appli-
cation of the LGW scheme [1] of an expansion in terms of
the low-T order parameter. Further analytical calculations
and numerical tests are needed to extend this study, notably
to investigate the possible proximity to a tricritical univer-
sality class. This will hopefully allow a deeper understand-
ing of the limits of a central concept in statistical physics.
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